
The Source Stepper in
Allegro CL 8.2

David Margolies (dm@franz.com)

Duane Rettig

Questions and comments to

support@franz.com

2/25/2010 2

Source Stepper Availability

� Available on platforms that support the IDE
(Integrated Development Environment)

� Available as a tty interface when IDE is not
available (as we will show)

� Not available on Solaris or AIX at this time

2/25/2010 3

Requirements for source stepping

� Code must be in a file

� The file must be compiled and loaded into Lisp

� The compilation must be done while the
compiler:save-source-level-debug-info-switch
is true, which it is when the debug optimization
quality is 3

� *load-source-file-info* should be true (as it is
initially)

2/25/2010 4

Source Stepping in the IDE

When the Stepper Dialog is visible, compilation
is done right (display it with the Stepper
Dialog command on the IDE’s Run menu):

2/25/2010 5

Stepper Dialog

2/25/2010 6

Once Stepper Dialog is displayed, files
will be compiled and loaded with info
stored

� If you use IDE tools to compile and load file,
for example using the Compile/Load button,
the file will be compiled suitably for source

stepping.

2/25/2010 7

A first example

� The following function is defined in foo.cl:

(defun foo (path n)

(with-open-file (s path :direction :input

:if-does-not-exist nil)

(let (line)

(dotimes (i n)

(setq line (read-line s nil s))

(if (eq line s) (return))

(print s)))))

2/25/2010 8

You must set at least one breakpoint
using the :br top-level command

� :br foo
This sets a breakpoint at foo. When a call is made to the

function foo, computation will stop and information will be

displayed in the stepper dialog (we are not doing this yet)

:br nil ;; clears breakpoints

2/25/2010 9

The function foo reads some lines of a
file and prints them

� The idea is you specify a file and a number of
lines, that number of lines read and printed.

� There is an error in the function: the stream
object is printed rather than the line.

2/25/2010 10

We compile and load the file and call
foo:

� cg-user(6): (foo "foo.cl" 10)

� #<file-simple-stream #P"foo.cl" for input pos 23 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 25 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 46 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 94 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 149 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 169 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 196 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 244 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 284 @ #x210f0a6a>

� #<file-simple-stream #P"foo.cl" for input pos 310 @ #x210f0a6a>

� nil

� cg-user(7):

2/25/2010 11

Not what we wanted!

� So we will step through to see what is going
on.

� We display the Stepper Dialog. We must
recompile (so source debug info will be
displayed).

� We modify foo.cl and save so compile/load will
recompile (you can enter a space to change
the file).

� We set a breakpoint, :br foo, and call

(foo “foo.cl” 10)

2/25/2010 12

Stepping information makes the
compiled (fasl) file bigger

� foo.fasl without stepping info is 3 Kb.

� foo.fasl with stepping info is 8 Kb.

2/25/2010 13

Stepper Dialog displaying call to foo

2/25/2010 14

We just click Next and watch the forms
being evaluated

� When we get to (print s), the stream object is
printed and we (presumably) figure out our
error:

(print s) should be (print line)

2/25/2010 15

Things to note

� Macros are expanded. You see the macro expansion

and the individual forms

� Relevant stack values are displayed. Often many

are unobvious but some are what you expect

� The form being executed is displayed

� Colors indicate information about a form

2/25/2010 16

More things to note

� The Return button returns from the current form

� The Continue button usually jumps to the next
breakpoint, and so often to the end of the form
being evaluated (and clears the dialog)

� Closing the dialog does not stop stepping, but
initiates the tty stepper

� Reopening the dialog usually reinitiates dialog
stepping (after a return is entered), but
closing/reopening is not recommended

2/25/2010 17

The Edit button

� Clicking on the Edit Button displays the source
in a Editor pane

� When a form is highlighted in blue, it is usually
the same as a form in the source and that form
will be highlighted in the Editor pane

� This allows you to go right to the source of
interest

2/25/2010 18

Dynamically setting breakpoints

� Breakpoints are indicated by red parentheses.

� You can add/remove breakpoints with the

mouse

� Then Continue jumps to the next breakpoint

2/25/2010 19

TTY stepper

� If the IDE is not being used or the Stepper
dialog is not displayed, you get the tty source
stepper.

� The initial steps are the same (make sure
debug is 3, compile the file, set a breakpoint,
evaluate a form).

� Using the dialog is preferred because there is
a lot of information to display

2/25/2010 20

The Macro Expansion Stepping Action
option

� This affects how we step through macros and
into functions.

� (This is the :slide option in the tty stepper)

2/25/2010 21

Last notes

� Compiled files can be very much bigger when
stepping information is stored.

� The actual running code is unchanged. The
extra space comes from the annotations.

� In certain cases, the compiler can take
minutes when before it took microseconds.

2/25/2010 22

Documentation

� The tty source stepper in

doc/debugging.htm#source-step-1

� The Stepper Dialog in doc/ide-menus-and-

dialogs/stepper-dialog.htm

� Be sure to do updates as we will be making

improvements/fixing issues

2/25/2010 23

The Source Stepper in
Allegro CL 8.2

� David Margolies (dm@franz.com)

� Duane Rettig

� Questions and comments to

support@franz.com

