

Copyright 2009, Glenn D. House – 2Is Inc., and Charles A. Cox, Franz Inc. page 1 of 4

Operational Assessment Support Information System

(OASIS)
Glenn D. House Sr.

2Is Inc.
75 West Street

Walpole, MA 02081
(508) 850-7520 x202

glenn_house@2is-inc.com

Charles A. Cox
Franz Inc.

2201 Broadway, Suite 715
Oakland, CA 94612
(510) 452-2000 x125

cox@franz.com

ABSTRACT

In this paper, we describe an Operational Assessment

Support Information System (Oasis) predominantly

implemented with Lisp and Lisp based building blocks.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Lisp, AllegroCache,

AllegroServe, WebActions, and Backbase and

Features – distributed computing, Software as a

Service (SaaS).

General Terms

Design, Languages.

Keywords

Lisp, expert system, logistics, supply chain,

forecasting, WebActions, Allegro Cache, SaaS,

distributed computing.

1. INTRODUCTION
2Is Inc. has developed an Operational Assessment

Support Information System (OASIS
TM

) application.

OASIS
TM

 verifies the output of Enterprise Resource

Planning (ERP) logistic systems used by, for example,

parts suppliers and manufacturers. Oasis then

recommends a set of corrective actions when

conditions (rules) are violated. The System has been

implemented, with the exception of AJAX controls,

entirely in Lisp, and is served using the Software as a

Service (SaaS) model. Verification is performed using

raw ERP data as well as other database sources.

OASIS independently computes relevant ERP

functional outputs and then compares the results

against OASIS’ own results. A production rule based

expert system determines the most likely causes and

effects of the specific difference between expected

outputs of the ERP system. OASIS then recommends

corrective actions for consideration. A scoring

mechanism is generated so users can understand the

health of their population of repair parts, where health

of the population is defined and the number of critical

discrepancies per part.

OASIS
TM

 is a secure, web-based, collaborative

application, hosted at a Government Owned

Contractor Operated (GOCO) data center rated to

handle top-secret information. Where ERP logistic

systems are focused on individual parts, OASIS

provides support for families of parts, also known as

populations. OASIS ranks populations according to

discovered anomalies and reports a score. These

populations can be easily explored in a one-click, web-

based interface.

Designed to be super-scalable, OASIS is capable of

serving millions of part numbers while providing

access for hundreds of simultaneous users. By taking

advantage of 2Is proprietary distributed computing

implementation, analysis and production rules are

evaluated in parallel, consuming resources required to

meet a particular time stationery window. All data is

aggregated in a replicable object-oriented persistent

data store.

Being a web-site, OASIS has minimal intrusion into

the user’s desktop resources. Additionally, no

interaction with a user’s local registry or file system is

necessary. All that is required is an Internet Explorer

compatible browser. OASIS uses customized AJAX

controls, which result in a very efficient presentation

and a one-click-away interface which is usually

reserved for desktop applications.

OASIS is currently in test at the Defense Logistics

Agency and a major defense contractor. Its Lisp

language implementation uses AllegroCache as its

distributed object database and a proprietary Lisp web

Copyright 2009, Glenn D. House – 2Is Inc., and Charles A. Cox, Franz Inc. page 2 of 4

server based on AllegroServe. AJAX web browser

components are supplied by BackBase
1
.

2. Scalability
Scalability was a large issue to be tackled in OASIS.

There were three areas for scalability: subscriber

access; persistent store, and data analysis. OASIS

uses an integrated load balancing approach

implemented in our custom version of AllegroServe.

This approach allows for the expansion of hardware in

the front-end to handle simultaneous user load. An

attribute of this control allows for the replication of the

master data server as required should connection to the

persistent store ever become a bottleneck.

OASIS must perform forecasting, evaluate production

rules for its expert system and perform numerous

calculations on each part in the database. Many of

these operations are costly in time and space. A

parallel architecture was designed such that a single

control executive, called DAC (for Data Acquisition

and Crunching), allocates tasks through workers that

autonomously and asynchronously communicates with

the database. Through these workers, blocks of parts

are processed simultaneously. The DAC controls how

many workers, which machines, block size and many

other attributes. It is controlled through a web based

application call the OASIS Management and Control

Center (OMCC). Each worker’s lifetime depends

solely on the needs of the DAC and numerous self

controls are built into each worker – such as self-

destruct.

This data parallelization approach allows for the

preparation of data as a function of hardware and

bandwidth while minimizing the effects of a growing

population of parts.

AllegroCache is used as the database for OASIS. This

provides a natural persistency to the Common Lisp

Object System (CLOS) objects. Furthermore, the

dynamic nature of CLOS and AllegroCache makes it

easy to redefine the database schema after the database

has already been built and is one key to our

dramatically reduced development and maintenance

cycle times.

1 Backbase, (founded in 2003) is a pioneer and leader in the

emerging commercial RIA industry and we provide our

customers with world class RIA solutions,

http://www.backbase.com

3. Web-based User Interface

3.1 Normal Interface User Description
The user interface to OASIS is an interactive tabbed

window for specific task areas. The initial tab

presents a table of parts for a selected population.

Each entry in this table lists the part number along

with information about the part, such as its current

price, quantity on-hand, forecasted demand (calculated

by OASIS), as well as about a dozen other pieces of

information. This table is dynamically sortable by any

column and searchable by part number and other

attributes.

The user can select a particular row, corresponding to

a particular part and can find additional information

about the part using windows. The windows slide out

from the side of the main window to display the part's

demand history (textually or by chart), demand

forecasts, and the systems in which the part is used.

The user can drill down deeper into a part, by

switching to a tab that displays more information

about the part, such as stocking information and codes

that are meaningful to part manufacturers. This page

also presents buttons that pop up windows of tables

for procurement history and details of stocking

information as well as forecasting results.

On the main user interface window, another tab

presents categorizations of the results of the OASIS

expert system. Each "rule" is labeled with a code and

the user interface can display all the violations either

by code, or by other criteria such as priority or the

system in which it belongs. This organization is

presented to the user as an interactive tree dialog. On

the left side of the window is the tree and on the right

side is a detailed description of whichever item in the

tree is currently selected.

A three tier context sensitive help system is available

throughout the user experience. Dynamically

calculated tool tips explain the myriad of acronyms.

Context sensitive case studies allow users to get the

help and guidance they need similar to the exceptions

they are trying to resolve. A full feature help facility,

complete with video tutorials, pdf documentation and a

hypertext user manual is available.

Copyright 2009, Glenn D. House – 2Is Inc., and Charles A. Cox, Franz Inc. page 3 of 4

3.2 User Interface Implementation
The original implementation of OASIS was as a

Windows
2
 application built using Allegro Common

Graphics. In order to reach a wider audience,

minimize distribution costs (while still being able to

have central control over the parts data), a secure http

web site was created using Allegro WebActions. The

widgets for the windows interface within a browser are

from an AJAX-based widget library provided by a

third-party company, Backbase
3
.

This is the first known attempt to use the Backbase

interface with Allegro WebActions. Indeed, this may

be the first time Backbase has even been used with a

Lisp server. Since Allegro WebActions and

AllegroServe are designed to provide HTML data via

HTTP, and since Backbase is designed to receive

XML data via HTTP, we needed to invent some

machinery for translation that had to be efficient and

fast. This approach consisted of wrapper XML forms

around HTML files that are expanded in the normal

course of Allegro WebActions' processing.

AllegroServe includes an HTML rendering macro that

very easily maps Lisp s-expressions to HTML

expressions. Backbase, however, uses an extensive set

of XML tags and attributes to control its widgets.

Generating such XML expressions goes beyond what

is immediately available with the AllegroServe’s

HTML macro. In some cases, we created template

files, known in Allegro WebActions as "clp" files that

contained XML wrappers. In other cases, we had to

use Lisp directly to write the XML expressions.

3.3 Testing the Allegro WebActions

separation of tasks claim
Allegro WebActions allows user interface developers

to build web sites using a separation of content and

code. Specifically, we had a non-programmer web

page designer become familiar with what Backbase

provided then designed the visual interface experience.

This designer developed a prototype shell with dummy

data that would be replaced by calls to the WebActions

clp (Lisp) functions that would provide the actual

dynamic data.

2 Windows is a trademark of Microsoft Corporation

3 Backbase is a registered trademark of Backbase Inc.

The task of converting the designer's shell to a

dynamic web site was straightforward. The challenge

was to continue having the web developer enhance the

interface after it had been “fitted” to the application.

At one point, new static pages with dummy data were

generated for the web designer to use. This approach

ended up failing so the Lisp developer, who had by

then become very familiar with Backbase, eventually

handled the visual changes as well as the backend

development.

Thus, we had much initial success with separating the

web page design tasks from the programming tasks,

but after fitting the interface to the application, we had

only limited success maintaining the

developer/designer separation.

4. Results
OASIS was developed using 2Is Software

Development process which has been successfully

audited against the SEI CMMI Level 3 standards. Our

team is geographically dispersed. SEI CMMI is a

standardized model for system and software

development. It was developed at Carnegie-Mellon

University.

Our initial OASIS implementation, released in June of

2007, was able to process 50,000 parts in 20 hours. It

also served a population averaging 3,000 parts to the

user’s desktop in one minute.

Our current release (Nov 2008) deploys our

parallelization approach; we process 60,000 parts in

less than 2 hours. Tests of our system indicate that

data processing time is logarithmic with workers and

machines. Processing time for millions of parts is now

proportional to the hardware infrastructure available to

the DAC.

Another area for optimization was load time of parts to

the user’s desktop. Improvements in architecture and

database schema allowed for users to gain access to

20,000+ part populations streamed to their desktop in

less than one minute under typical conditions. These

population sizes far exceed typical sized populations of

1000. Once streamed, most operations, including

sorting and searching, are instantaneous. The speed at

which these optimizations were developed, tested and

deployed were only possible due to the flexibility of

AllegroCache’s redefinition capability and the Lisp

environment.

Copyright 2009, Glenn D. House – 2Is Inc., and Charles A. Cox, Franz Inc. page 4 of 4

5. Conclusions
Lisp has proven to be an effective implementation

language for OASIS providing well known and

documented productivity and execution speed
4
. In

addition, AllegroCache has shown to be effective in

storing and retrieving a real-time database backed web

application. AllegroCache’s flexibility in redefinition

has reduced the development and maintenance cycle,

allowing the development team to be responsive to the

customers’ feedback. Further work needs to be done

to integrate a web authoring environment into our

design methodology. WebActions allow for the

separation of content and presentation in addition to

driving AJAX controls. We attribute most of the

implementation success of OASIS to using an all Lisp

components

4 Gat, Eann, 2000 Lisp as an Alternative to Java, Winter 2000

Intelligence, A Publication of the ACM, JPL, California

Institute of Technology,

